
Institute of Architecture of Application Systems,
University of Stuttgart, Germany

{wettinger, breitenbuecher, leymann}@iaas.uni-stuttgart.de

 Compensation-based vs. Convergent
Deployment Automation for Services Operated

in the Cloud
Johannes Wettinger, Uwe Breitenbücher, Frank Leymann

@inproceedings{Wettinger2014,	
	 	 author	 	 	 	 =	 {Johannes	 Wettinger	 and	 Uwe	 Breitenb{\"u}cher	 and	 Frank	 Leymann},	
	 	 title	 	 	 	 	 =	 {Compensation-‐based	 vs.	 Convergent	 Deployment	 Automation	 for	

Services	 Operated	 in	 the	 Cloud},	
	 	 booktitle	 =	 {Proceedings	 of	 the	 12th	 International	 Conference	 on	 Service-‐	

Oriented	 Computing	 (ICSOC	 2014)},	
	 	 year	 	 	 	 	 	 =	 {2014},	
	 	 pages	 	 	 	 	 =	 {336-‐-‐350},	
	 	 series	 	 	 	 =	 {Lecture	 Notes	 in	 Computer	 Science	 (LNCS)},	
	 	 publisher	 =	 {Springer-‐Verlag}	
}	

:

Institute of Architecture of Application Systems

© 2014 Springer-Verlag.
The original publication is available at http://www.springerlink.com
See LNCS website: http://www.springeronline.com/lncs

Compensation-based vs. Convergent Deployment
Automation for Services Operated in the Cloud

Johannes Wettinger, Uwe Breitenbücher, and Frank Leymann

Institute of Architecture of Application Systems, University of Stuttgart
{wettinger,breitenbuecher,leymann}@iaas.uni-stuttgart.de

Abstract Leading paradigms to develop and operate applications such
as continuous delivery, configuration management, and the merge of
development and operations (DevOps) are the foundation for various
techniques and tools to implement automated deployment. To expose such
applications as services (SaaS) to users and customers these approaches
are typically used in conjunction with Cloud computing to automatically
provision and manage underlying resources such as storage or virtual
machines. A major class of these automation approaches follows the idea
of converging toward a desired state of a resource (e.g., a middleware
component deployed on a virtual machine). This is achieved by repeatedly
executing idempotent scripts until the desired state is reached. Because of
major drawbacks of this approach, we present an alternative deployment
automation approach based on compensation and fine-grained snapshots
using container virtualization. We further perform an evaluation compar-
ing both approaches in terms of difficulties at design time and performance
at runtime.

Keywords: Compensation, Snapshot, Convergence, Deployment Automation,
DevOps, Cloud Computing

1 Introduction

Cloud computing [10,21,7] can be used in different setups such as public, private,
and hybrid Cloud environments to efficiently run a variety of kinds of applications,
exposed as services (SaaS). Prominent examples are Web applications, back-ends
for mobile applications, and applications in the field of the “internet of things”,
e.g., to process large amounts of sensor data. Users of such services based on
Cloud applications expect high availability and low latency when interacting with
a service. Consequently, the applications need to scale rapidly and dynamically
to serve thousands or even millions of users properly. To implement scaling in a
cost-efficient way the application has to be elastic, which means that application
instances are provisioned and decommissioned rapidly and automatically based
on the current load. Cloud providers offer on-demand self-service capabilities,
e.g., by providing corresponding APIs to provision and manage resources such as
virtual machines, databases, and runtime environments. These capabilities are

2 Johannes Wettinger et al.

the foundation for scaling applications and implementing elasticity mechanisms
to run them efficiently in terms of costs. Moreover, users of services operated
in the Cloud expect fast responses to their changing and growing requirements
as well as fixes of issues that occur. Thus, underlying applications need to be
redeployed frequently to production, e.g., several times a week. Development and
operations need to be tightly coupled to enable such frequent redeployments.
DevOps [5,3] aims to eliminate the split between developers and operations to
automate the complete deployment process from the source code in version control
to the production environment. Today, the DevOps community follows a leading
paradigm to automate the deployment, namely to implement idempotent scripts
to converge resources toward a desired state. Because this approach has some
major drawbacks we propose an alternative approach based on compensation.
Our major contributions are presented in this paper:

– We present the fundamentals of state-of-the-art deployment automation
approaches and point out existing deficiencies and difficulties

– We propose an alternative approach to implement deployment automation
based on compensation on different levels of granularity to improve the
efficiency and robustness of script execution

– We further show how compensation actions can be automatically derived at
runtime to ease the implementation of compensation based on snapshots

– We evaluate the compensation-based deployment automation approach based
on different kinds of applications operated in the Cloud and exposed as
services

The remainder of this paper is structured as follows: based on the fundamentals
showing state-of-the-art deployment automation approaches (Sect. 2), focusing on
convergent deployment automation, we present the problem statement in Sect. 3.
To tackle the resulting challenges, Sect. 4 presents approaches to implement
compensation-based deployment automation. Our evaluation of compensation-
based deployment automation is presented and discussed in Sect. 5 and Sect. 6.
Finally, Sect. 7 presents related work and Sect. 8 concludes this paper.

2 Fundamentals

The automated deployment of middleware and application components can be
implemented using general-purpose scripting languages such as Perl, Python, or
Unix shell scripts. This is what system administrators and operations personnel
were primarily using before the advent of DevOps tools providing domain-specific
languages [2] to create scripts for deployment automation purposes. We stick
to the following Definition 1 for a script to be used for automating operations,
especially considering deployment automation:

Definition 1 (Operations Script). An operations script (in short script)
is an arbitrary executable to deploy and operate middleware and application
components by modifying the state of resources such as virtual machines. Such a

Compensation-based vs. Convergent Deployment Automation 3

state modification could be the installation of a software package, the configuration
of a middleware component, etc. A script consists of a sequence of actions such
as command statements that implement state modifications.

Technically, a script can be implemented imperatively (e.g., using general-
purpose scripting languages) or declaratively (e.g., using domain-specific lan-
guages [2]). In case of using a declarative language, the concrete imperative
command statements and their sequential ordering has to be derived in a prepro-
cessing step before the actual execution. As an alternative to scripts, compiled
programs could be used, based on portable general-purpose programming lan-
guages such as Java. However, this would decrease the flexibility and may have
performance impact, because the source code has to be compiled after each
change.

Resource
(e.g., a virtual machine, a container, etc.)

Desired State
(e.g., WordPress

running on Ubuntu)

Original State
(e.g., plain Ubuntu)

Run script
to reach

desired state

If error occurs on
execution of AX

Inconsistent State
(e.g., only database is

running)

Script

Action A1

Action A2

Action A3

…

If script is idempotent
à run script again to
converge resource to

desired state

Figure 1. Script to transfer or converge a resource toward a desired state

Figure 1 shows the basic usage of scripts: several actions Ax are specified in
the script that are command statements (install package “mysql”, create directory
“cache”, etc.) to transfer a particular resource such as a virtual machine (VM)
or a container [15,17] into a desired state. For instance, the original state of the
virtual machine could be a plain Ubuntu operating system (OS) that is installed,
whereas the desired state is a VM that runs a WordPress blog1 on the Ubuntu
OS. Consequently, a script needs to execute commands required to install and
configure all components (Apache HTTP server, MySQL database server, etc.)
that are necessary to run WordPress on the VM.

This is a straightforward implementation of deployment automation. However,
this approach has a major drawback: in case an error occurs during the execution
1 WordPress: http://www.wordpress.org

4 Johannes Wettinger et al.

of the script, the resource is in an unknown, most probably inconsistent state. For
instance, the MySQL database server is installed and running, but the installation
of Apache HTTP server broke, so the application is not usable. Thus, either
manual intervention is required or the whole resource has to be dropped and a
new resource has to be provisioned (e.g., create a new instance of a VM image)
to execute the script again. This is even more difficult in case the original state
is not captured, e.g., using a VM snapshot. In this case manual intervention is
required to restore the original state. This is error-prone, time-consuming, costly,
and most importantly even impossible in cases where the original state is not
documented or captured. Since errors definitely occur in Cloud environments,
e.g., if the network connection breaks during the retrieval of a software package,
it is a serious challenge to implement full and robust deployment automation.

This is why the DevOps community provides techniques and tools to imple-
ment convergent deployment automation: its foundation is the implementation
of idempotent scripts [4], meaning the script execution on a particular resource
such as a VM can be repeated arbitrarily, always leading to the same result if
no error occurs; if an error occurs during execution and the desired state is not
reached (i.e., resource is in an unknown state) the script is executed again and
again until the desired state is reached. Thus, idempotent scripts can be used
to converge a particular resource toward a desired state without dropping the
resource as shown in Fig. 1. With this approach the resource does not get stuck
in an inconsistent state. DevOps tools such as Chef [11] provide a declarative
domain-specific language to define idempotent actions (e.g., Chef resources2)
that are translated to imperative command statements at runtime, depending on
the underlying operating system. For instance, the declarative statement “ensure
that package apache2 is installed” is translated to the following command on an
Ubuntu OS: apt-get -y install apache2; on a Red Hat OS, the same declara-
tive statement is translated to yum -y install apache2. Imperative command
statements can also be expressed in an idempotent manner. For instance, a simple
command to install the Apache HTTP server on Ubuntu (apt-get -y install
apache2) is automatically idempotent because if the package apache2 is already
installed, the command will still complete successfully without doing anything.
Other command statements need to be adapted such as a command to retrieve the
content of a remote Git3 repository: git clone http://gitserver/my_repo.
This command would fail when executing it for a second time because the di-
rectory my_repo already exists. To make the command statement idempotent a
minor extension is required that preventively deletes the my_repo directory: rm
-rf my_repo && git clone http://gitserver/my_repo.

3 Problem Statement

As discussed in Sect. 2, convergent deployment automation makes the execution
of scripts more robust. However, it may not be the most efficient approach to
2 Chef resources: http://docs.opscode.com/resource.html
3 Git: http://git-scm.com

Compensation-based vs. Convergent Deployment Automation 5

repeatedly execute the whole script in case of errors until the desired state is
reached. Furthermore, this approach only works in conjunction with idempotent
scripts. While in most cases it is possible to implement idempotent actions, it can
be challenging and sophisticated to implement fully idempotent scripts without
holding specific state information for each action that was executed. Typical
examples include:

– An action to create a database or another external entity by name, so the
second execution results in an error such as “the database already exists”.

– An action that sends a non-idempotent request to an external service (e.g.,
a POST request to a RESTful API), so the second request most probably
produces a different result.

– An action to clone a Git repository, so the second execution fails because the
directory for the repository already exists in the local filesystem.

Consequently, major efforts need to be invested to create and test idempotent
scripts to ensure their robustness. Moreover, issues may occur, preventing a
resource from converging toward the desired state, so the resource hangs in
an unknown state. As an example, Ubuntu’s apt package manager4 may crash
during the installation of software packages (e.g., in case of a dropped network
connection or a memory bottleneck), so the lock file (ensuring that apt is not
running multiple times in parallel) was not removed. In this case the lock file
needs to be removed manually; otherwise all subsequent executions of apt fail.
Sophisticated monitoring is required to detect such issues at runtime.

In the following Sect. 4 we present compensation-based deployment automation
on the level of scripts and actions as an alternative to the leading convergent
deployment automation approach. Our goal is to increase efficiency and robust-
ness without additional overhead. Moreover, our approach aims to reduce the
complexity of creating scripts by allowing arbitrary non-idempotent actions in it.

4 Compensation-based Deployment Automation

The main idea of compensation is to implement an undo strategy that is run
in case an error occurs during the execution of a particular script or action.
Depending on the level of implementing compensation, either compensation
scripts can be implemented to roll back the work performed by a particular
script or compensation actions can be implemented to undo a single action.
In the following Sect. 4.1 and Sect. 4.2, we discuss how compensation can
be implemented on these two different levels. Moreover, Sect. 4.3 presents an
approach to automatically derive compensation actions at runtime based on
fine-grained snapshots.

4 Ubuntu’s apt package manager: http://packages.ubuntu.com/trusty/apt

6 Johannes Wettinger et al.

4.1 Compensation on the Level of Scripts

To implement compensation on the level of scripts, a compensation script has to
be implemented for each script to compensate the work performed by the script
itself. For instance, if the script has installed parts of the WordPress application,
the compensation script needs to uninstall these parts in case an error occurs
during the installation. Then, the script runs again. Obviously, a proper retry
strategy needs to be implemented such as defining the maximum number of
retries to deal with situations where a certain issue persists. If the maximum
number of retries is reached the compensation script is executed for the last time
and the error gets escalated to the invoker of the script, e.g., a deployment plan
implemented as a workflow [20].

Resource
(e.g., a virtual machine, a container, etc.)

Desired State
(e.g., WordPress

running on Ubuntu)

Original State
(e.g., plain Ubuntu)

Run script
to reach

desired state

If error occurs on
execution of AX

à run comp. script
à run script again

Inconsistent State
(e.g., only database is

running)

Compensation Script

Script

Action A1

Action A2

Action A3

…

Figure 2. Compensation script to undo the work performed by a script

Figure 2 outlines how this coarse-grained way of implementing compensation
works, considering a script as an atomic entity in terms of compensation. As an
example, the following listing shows an extract of a Unix shell script to create a
database and to retrieve the content of a Git repository:

1 #!/ bin /sh
2
3 . . .
4
5 echo "CREATE DATABASE $DBNAME" | mysql −u $USER
6
7 g i t c l o n e http : / / g i t s e r v e r /my_repo

The following extract of a Unix shell script shows how a corresponding
compensation script could be implemented:

Compensation-based vs. Convergent Deployment Automation 7

1 #!/ bin /sh
2
3 echo "DROP DATABASE $DBNAME" | mysql −u $USER
4
5 rm −r f my_repo
6
7 . . .

The challenge of implementing a compensation script is that the current
state of the corresponding resource is unknown, depending on the point in time
the error occurred during script execution. Consequently, the compensation
script has to consider a lot of potential problems that may occur. This makes
a compensation script hard to implement and to maintain. Thus, the following
Sect. 4.2 presents a more fine-grained approach to implement compensation on
the level of actions.

4.2 Compensation on the Level of Actions

In contrast to script-level compensation as discussed before, a compensation
action is implemented and attached to each action defined in the script: if an
error occurs during the execution of action Ax, the corresponding compensation
action CAx is run. Then, Ax is executed again to eventually continue with
the following actions. Similar to the script-level compensation a proper retry
strategy needs to be implemented. For instance, the maximum number of retries
for rerunning a particular action Ax needs to be defined. Once this number is
reached all previous actions need to be compensated by running CAx, CAx−1,
. . . , CA1. Then, the error gets escalated to the invoker of the script, e.g., a
workflow. The invoker may perform some clean-up work, e.g., removing VMs
that are in an unknown state. Compared to script-level compensation (Sect. 4.1)
and the convergent approach (Sect. 2) this behavior is more efficient in terms of
execution time because the script is not compensated and rerun as a whole; only
the affected action gets compensated and is then executed again.

Figure 3 outlines how this fine-grained compensation approach works. Tech-
nically, compensation actions CAx can be defined and attached on the level of
command statements. For instance, the compensation action CA3 attached to
action A3 that clones a Git repository (git clone http://gitserver/my_repo)
could be the following to remove the cloned repository from the filesystem: rm
-rf my_repo. Another example is sending a PUT request to a RESTful API to
create a resource. For instance, the compensation action may have to send one or
several DELETE requests to the API to remove the created resource and maybe
other resources that were created as a result of the original PUT request. The
following extract of an extended Dockerfile5 (sequence of Unix shell commands)
shows how compensation actions (COMPENSATE statements) can be defined and
attached to actions (RUN statements) using cURL6, a simple command-line HTTP
client.
5 Dockerfile reference: http://docs.docker.io/reference/builder
6 cURL: http://curl.haxx.se

8 Johannes Wettinger et al.

Resource
(e.g., a virtual machine, a container, etc.)

Desired State
(e.g., WordPress

running on Ubuntu)

Original State
(e.g., plain Ubuntu)

Run script
to reach

desired state

Script

Action A1 Compensation Action CA1

Action A2 Compensation Action CA2

Action A3 Compensation Action CA3

… …

If error occurs on execution of
AX à run CAX à run AX again
à continue with following

actions

Inconsistent State
(e.g., only database is

running)

Figure 3. Compensation actions to undo the work of individual actions

1 . . .
2
3 RUN c u r l −H " Content−Type : a p p l i c a t i o n / j s o n " −X PUT −−data "@$ID . j s o n "

−u $USER :$PASSWORD http : / / . . . / e n t r i e s /$ID
4
5 COMPENSATE c u r l −X DELETE −u $USER :$PASSWORD http : / / . . . / e n t r i e s /$ID
6
7 RUN . . .
8 COMPENSATE . . .

Compared to compensation scripts, compensation actions are easier to imple-
ment because only the scope of one particular command statement needs to be
considered. However, it may be tedious to manually implement compensation
actions for each particular action defined in a script. Thus, the following Sect. 4.3
presents a compensation approach to dynamically generate compensation actions
at runtime based on fine-grained snapshots.

4.3 Snapshot-based Compensation

Action-level compensation as discussed before provides some advantages over
script-level compensation because only the scope of a single action has to be
considered when implementing the compensation logic. However, for scripts
with a huge number of actions, many individual compensation actions have to
implemented and attached to the script. Because their creation is time-consuming
and error-prone, plus they are hard to maintain, we need a means to automatically
generate compensation actions. Figure 4 shows how fine-grained snapshots can be
used to capture and restore an arbitrary state of a resource. This technique can
be used to create a snapshot S0 of the original state and an additional snapshot
S1, S2, . . . for each action A1, A2, . . . that was executed successfully. Moreover,

Compensation-based vs. Convergent Deployment Automation 9

a compensation action CAx for each action Ax gets generated automatically at
runtime to restore the snapshot Sx−1 that was created after the previous action
has been executed successfully.

Resource
(e.g., a virtual machine, a container, etc.)

Desired State
(e.g., WordPress

running on Ubuntu)

Original State
(e.g., plain Ubuntu)

Run script
to reach

desired state

Script

… …

If error occurs on execution of
AX à run CAX à run AX again
à continue with following

actions

Inconsistent State
(e.g., only database is

running)

create S0

A1 ; create S1 CA1 := restore S0

A2 ; create S2 CA2 := restore S1

State
Snapshots

SX

Figure 4. Snapshot-based compensation of individual actions

Of course, the snapshot-based compensation approach can also be implemented
on the level of scripts as discussed in Sect. 4.1. However, this is only feasible
if all actions of a script can be compensated using snapshots and do not need
custom compensation logic such as sending specific requests to external resources.
In this case custom compensation actions have to be attached to the affected
actions. Consequently, the snapshot-based compensation approach can be used as
a fallback to generate compensation actions at runtime for all actions that do not
have a custom compensation action attached. This speeds up the development of
scripts because compensation actions have to be implemented only for actions
that cannot rely on the snapshot-based approach to compensate their work.

5 Evaluation

Conceptually, we discussed multiple variants of compensation-based deployment
automation in Sect. 4. Our evaluation compares the compensation-based approach
with convergent deployment automation in terms of performance impact at run-
time and difficulties at design time. We implemented the automated deployment
of three different kinds of open-source Web applications, covering a set of wide-
spread technologies and middleware to implement such applications. Figure 5
outlines the architectures of the applications, namely a simple Chat Application7

7 Chat Application: http://github.com/geekuillaume/Node.js-Chat

10 Johannes Wettinger et al.

Node.js
Runtime

Chat Application

Apache HTTP
Server

MySQL
Database

Server

PHP Module

WordPress Application

Ruby Runtime

MySQL
Database

Server

Ruby on Rails
Framework

Redmine Application

Figure 5. Architectures of three Web applications

based on Node.js, the Ruby-based project management and bug-tracking tool
Redmine8, and WordPress9 to run blogs based on PHP. Each application is
deployed on a clean VM (1 virtual CPU clocked at 2.8 GHz, 2 GB of memory)
on top of the VirtualBox hypervisor10, running a minimalist installation of the
Ubuntu OS, version 14.04.

Application Average Duration (in sec.) Average Memory Usage (in MB)

Clean Deployments Using Chef:
WordPress 211 (σ = 114) 333 (σ = 2)
Chat App 265 (σ = 37) 248 (σ = 1)
Redmine 1756 (σ = 191) 1479 (σ = 4)

Clean Deployments Using Docker:
WordPress 71 (σ = 10) 548 (σ = 1)
Chat App 249 (σ = 7) 478 (σ = 2)
Redmine 741 (σ = 17) 583 (σ = 5)

Table 1. Measurements in clean environment and their standard deviation σ

Technically, we use Chef solo11 version 11.12.4 as a configuration manage-
ment solution to implement convergent deployment automation for all three
applications based on idempotent scripts (Chef cookbooks). Furthermore, we use
Docker12 version 0.9.1 as a container virtualization solution to implement action-
level compensation based on fine-grained container snapshots. Consequently,
we implemented scripts as Dockerfiles (sequence of Unix shell commands) that
do exactly the same as the Chef cookbooks created before, but without being
8 Redmine: http://www.redmine.org
9 WordPress: http://www.wordpress.org

10 VirtualBox: http://www.virtualbox.org
11 Chef solo: http://docs.opscode.com/chef_solo.html
12 Docker: http://www.docker.io

Compensation-based vs. Convergent Deployment Automation 11

Application Average Duration (in sec.) Average Memory Usage (in MB)

Disturbed Deployments Using Chef:
WordPress 182 (σ = 84) 334 (σ = 3)
Chat App 394 (σ = 78) 237 (σ = 5)
Redmine 1948 (σ = 262) 1479 (σ = 2)

Disturbed Deployments Using Docker:
WordPress 74 (σ = 6) 779 (σ = 1)
Chat App 258 (σ = 36) 576 (σ = 59)
Redmine 991 (σ = 120) 1260 (σ = 268)

Table 2. Measurements in disturbed environment and their standard deviation σ

idempotent. Based on these implementations we run the deployment process of
each application using both Chef and Docker in two different environments: the
clean environment allows the deployment process to run without any errors; the
disturbed environment emulates networking issues and memory bottlenecks by
blocking TCP connections and killing system processes. We run each of the 24
combinations five times, so Table 1 and Table 2 present the average duration,
the average memory usage, and their standard deviation. Each run is triggered
using the same setup without any pre-cached container images or beneficial
preparations. In the following Sect. 6 we discuss the results of our evaluation
based on the measurements presented in Table 1 and Table 2 as well as the
experience we gained during the implementation of the scripts following different
deployment automation approaches.

6 Discussion

By analyzing the measurements presented in Sect. 5 we see that the compensation-
based deployment automation approach with snapshots on the level of actions
based on Docker consistently has a better performance in terms of deployment du-
ration than the convergent approach based on Chef. This shows that repetitively
executing an idempotent script to reach the desired state is more time-consuming
than using a compensation-based approach on the level of actions. Moreover,
the convergent approach may require more resources because declarative config-
uration definitions such as Chef cookbooks need to be compiled to imperative
command statements at runtime. However, especially for deployment processes
that have a shorter duration the memory consumption for convergent deployment
automation is less compared to the compensation-based approach. This mani-
fests the overhead of a snapshot-based approach where fine-grained, incremental
snapshots are cached to quickly restore the state captured after the last suc-
cessfully executed action. This happens preventively, even in case the snapshots

12 Johannes Wettinger et al.

are not used, e.g., if no error occurs (clean environment). For longer-running
deployment processes with more memory consumption in general such as the one
of Redmine this overhead becomes less relevant, so in some cases such as the
Docker-based deployment of Redmine the memory usage is even less compared
to the corresponding Chef-based deployment.

In a disturbed environment that may be similar to an error-prone Cloud
environment, where network issues appear and memory bottlenecks occur, the
gap between the compensation-based and the convergent approach is significantly
larger in terms of deployment duration. In this case compensation clearly out-
performs convergence. Considering the design and implementation of scripts the
compensation-based scripts and actions are easier to implement because they
do not have to be idempotent as in the convergent approach. Moreover, most
compensation actions can be automatically generated at runtime based on snap-
shots, so the implementation of custom compensation actions is not necessary for
most actions. Fine-grained snapshots are also a convenient tool when developing,
testing, and debugging scripts: snapshots can be created at any point in time to
capture a working state and build upon this state, always having the possibility
to quickly restore this state. Without using snapshots the whole script has to be
executed for each test run. This can be time-consuming in case of more complex
scripts that do not terminate after a few seconds already.

7 Related Work

Today, compensation techniques for deploying and managing infrastructure
resources, middleware, and application components are mainly used by workflows
on the orchestration level: workflows or plans based on standardized languages
such as BPMN [14] or BPEL [12] are used on a higher level to coordinate the
execution of scripts, API calls etc. [1,6,20]. Figure 6 provides an overview of a
possible interrelation between higher-level plans (e.g., BPEL workflows) defining
the overarching flow of activities and the scripts SCRy that actually manage
the states STn of the underlying resources Rm that are involved. Compensation
activities can be defined to compensate the work of another activity in case an
error occurs [9,18,8]. In this example the install activity triggers the execution of
script SCR1 on R1. If an error occurs, e.g., during the execution of the install
activity, the attached compensate activity is triggered to run script SCR2, which
could be some kind of compensation script.

As an alternative to workflows, model-based approaches such as application
topology models can be used to orchestrate scripts in a declarative manner. The
Topology and Orchestration Specification for Cloud Applications (TOSCA) [13]
is an emerging standard to specify such models. Moreover, there are provider-
and tooling-specific approaches to build topology templates such as Amazon’s
CloudFormation13, OpenStack Heat14, and Juju bundles15. All these approaches
13 Amazon CloudFormation: http://aws.amazon.com/cloudformation
14 OpenStack Heat: http://wiki.openstack.org/wiki/Heat
15 Juju bundles: http://juju.ubuntu.com/docs/charms-bundles.html

Compensation-based vs. Convergent Deployment Automation 13

Workflow

Resource R1

State
ST1

State
ST2

Script
SCR1

run

install

Script
SCR2

compen-
sate

run

… …

…

Figure 6. Activities and compensation activities in workflows

utilize scripts for lower-level tasks such as installing and configuring packages
on VMs. Thus, the compensation-based deployment automation approaches
presented in this paper can be combined with any of these higher-level approaches
to ease the development of underlying scripts and to enhance the overall efficiency
and robustness at runtime. Previous work [19,20] shows how to implement
separation of concerns for plans that invoke and orchestrate scripts and services.

8 Conclusions

Convergent deployment automation based on idempotent scripts is the leading
paradigm implemented by wide-spread DevOps tools such as Puppet [16] and
Chef [11]. We discussed the issues and deficiencies of this approach that occur at
design time and at runtime: idempotent scripts are hard to test and to implement;
due to their repetitive execution to converge a resource toward a desired state,
the scripts’ efficiency and robustness is not ideal. Based on these deficiencies
we presented compensation-based deployment automation as an alternative to
the convergent approach. We discussed how to implement compensation on the
level of scripts and on the level of individual actions. Moreover, we showed how
action-level compensation can be implemented using fine-grained snapshots to
minimize the effort of implementing custom compensation actions. Our evaluation
of compensation-based deployment automation compared to the convergent
approach showed:

– Compensation is more robust, preventing a resource such as a VM from
hanging in an inconsistent state without converging toward the desired state
anymore

– Action-level compensation is always more efficient in terms of deployment
duration

– Compensation may consume slightly more memory in some cases
– Compensation is easier to implement because scripts and actions do not have

to be idempotent
– Snapshot-based compensation eases the development of scripts because com-

pensation actions such as restore snapshot Sx can be automatically generated
at runtime for most actions defined in a script

14 Johannes Wettinger et al.

Currently, one major drawback of the compensation-based approach is its
minimalist tooling support. We were using Docker as a container virtualization
solution and Dockerfiles (construction plans for Docker containers) as scripts
that can be compensated based on fine-grained container snapshots. In terms
of future work we plan to extend existing domain-specific languages such as the
ones used by Chef, Puppet, and Docker to seamlessly integrate the compensation
approaches discussed in this paper. For instance, Chef can be extended to capture
and restore fine-grained container snapshots automatically in the background,
moving away from the inefficient strategy of running the whole script again and
again. Another approach would be to automatically generate Dockerfiles from
Chef scripts and then use Docker to execute them based on Docker’s compensation
and snapshot capabilities. In addition to deployment we plan to extend the scope
of our research to cover further lifecycle operations that are relevant after the
deployment phase. Existing approaches such as Cloud Foundry16 centered around
the platform-as-a-service model may be the technical foundation to consider these
lifecycle operations such as scaling certain application components. Furthermore,
we plan to extend our evaluation, including additional measurements such as the
disk storage used for storing snapshots.

Acknowledgments This work was partially funded by the BMWi project
CloudCycle (01MD11023).

References
1. Breitenbücher, U., Binz, T., Kopp, O., Leymann, F.: Pattern-based Runtime Man-

agement of Composite Cloud Applications. In: Proceedings of the 3rd International
Conference on Cloud Computing and Services Science. SciTePress (2013)

2. Günther, S., Haupt, M., Splieth, M.: Utilizing Internal Domain-Specific Languages
for Deployment and Maintenance of IT Infrastructures. Tech. rep., Very Large
Business Applications Lab Magdeburg, Fakultät für Informatik, Otto-von-Guericke-
Universität Magdeburg (2010)

3. Humble, J., Molesky, J.: Why Enterprises Must Adopt Devops to Enable Continuous
Delivery. Cutter IT Journal 24 (2011)

4. Hummer, W., Rosenberg, F., Oliveira, F., Eilam, T.: Testing Idempotence for
Infrastructure as Code. In: Middleware 2013, pp. 368–388. Springer (2013)

5. Hüttermann, M.: DevOps for Developers. Apress (2012)
6. Kopp, O., Binz, T., Breitenbücher, U., Leymann, F.: BPMN4TOSCA: A Domain-

Specific Language to Model Management Plans for Composite Applications. In:
Mendling, J., Weidlich, M. (eds.) Business Process Model and Notation. Lecture
Notes in Business Information Processing, vol. 125, pp. 38–52. Springer Berlin
Heidelberg (2012)

7. Leymann, F.: Cloud Computing: The Next Revolution in IT. In: Photogrammetric
Week ’09. Wichmann Verlag (2009)

8. Liu, F., Danciu, V.A., Kerestey, P.: A Framework for Automated Fault Recovery
Planning in Large-Scale Virtualized Infrastructures. In: Modelling Autonomic
Communication Environments, pp. 113–123. Springer (2010)

16 Cloud Foundry: http://cloudfoundry.org

Compensation-based vs. Convergent Deployment Automation 15

9. Machado, G.S., Daitx, F.F., da Costa Cordeiro, W.L., Both, C.B., Gaspary, L.P.,
Granville, L.Z., Bartolini, C., Sahai, A., Trastour, D., Saikoski, K.: Enabling
Rollback Support in IT Change Management Systems. In: Network Operations and
Management Symposium, 2008. NOMS 2008. IEEE. pp. 347–354. IEEE (2008)

10. Mell, P., Grance, T.: The NIST Definition of Cloud Computing. National Institute
of Standards and Technology (2011)

11. Nelson-Smith, S.: Test-Driven Infrastructure with Chef. O’Reilly Media, Inc. (2013)
12. OASIS: Web Services Business Process Execution Language (BPEL) Version 2.0

(2007)
13. OASIS: Topology and Orchestration Specification for Cloud Applications (TOSCA)

Version 1.0, Committee Specification 01 (2013), http://docs.oasis-open.org/
tosca/TOSCA/v1.0/cs01/TOSCA-v1.0-cs01.html

14. OMG: Business Process Model and Notation (BPMN) Version 2.0 (2011)
15. Soltesz, S., Pötzl, H., Fiuczynski, M.E., Bavier, A., Peterson, L.: Container-based

Operating System Virtualization: A Scalable, High-Performance Alternative to
Hypervisors. In: ACM SIGOPS Operating Systems Review. vol. 41, pp. 275–287
(2007)

16. Turnbull, J., McCune, J.: Pro Puppet. Apress (2011)
17. Vaughan-Nichols, S.J.: New Approach to Virtualization is a Lightweight. Computer

39(11), 12–14 (2006)
18. Weber, I., Wada, H., Fekete, A., Liu, A., Bass, L.: Automatic Undo for Cloud

Management via AI Planning. In: Proceedings of the Workshop on Hot Topics in
System Dependability (2012)

19. Wettinger, J., Behrendt, M., Binz, T., Breitenbücher, U., Breiter, G., Leymann, F.,
Moser, S., Schwertle, I., Spatzier, T.: Integrating Configuration Management with
Model-Driven Cloud Management Based on TOSCA. In: Proceedings of the 3rd
International Conference on Cloud Computing and Services Science. SciTePress
(2013)

20. Wettinger, J., Binz, T., Breitenbücher, U., Kopp, O., Leymann, F., Zimmermann,
M.: Unified Invocation of Scripts and Services for Provisioning, Deployment, and
Management of Cloud Applications Based on TOSCA. In: Proceedings of the 4th
International Conference on Cloud Computing and Services Science. SciTePress
(2014)

21. Wilder, B.: Cloud Architecture Patterns. O’Reilly Media, Inc. (2012)

http://docs.oasis-open.org/tosca/TOSCA/v1.0/cs01/TOSCA-v1.0-cs01.html
http://docs.oasis-open.org/tosca/TOSCA/v1.0/cs01/TOSCA-v1.0-cs01.html

